632 lines
32 KiB
Python
632 lines
32 KiB
Python
# -*- coding: utf-8 -*-
|
||
# @Author: Owl
|
||
# @Date: 2025/10/10 19:51
|
||
# @Description: 路口评价相关的公共函数
|
||
import json
|
||
import logging
|
||
from copy import copy
|
||
|
||
import requests
|
||
|
||
import proto.xlcomm_pb2 as pb
|
||
from app.global_source import db_tmnet, db_cross
|
||
|
||
src_reverse = {'N': 'S', 'S': 'N', 'W': 'E', 'E': 'W', 'NE': 'SW', 'SW': 'NE', 'SE': 'NW', 'NW': 'SE'}
|
||
|
||
dir_str_dict = {
|
||
'E': '东', 'S': '南', 'W': '西', 'N': '北', 'NE': '东北', 'SE': '东南', 'SW': '西南', 'NW': '西北'
|
||
}
|
||
|
||
int_turn_type2str = {
|
||
0: '直行',
|
||
1: '左转',
|
||
2: '右转',
|
||
3: '掉头'
|
||
}
|
||
|
||
int_internet_code2str = {
|
||
0: '无',
|
||
1: '联网',
|
||
2: '脱机',
|
||
3: '未接入'
|
||
}
|
||
|
||
int_cross_model2str = {
|
||
1: '快',
|
||
2: '主',
|
||
3: '次',
|
||
4: '支'
|
||
}
|
||
|
||
|
||
def gen_avg_cross_delay_pb(cross_delay_data_list):
|
||
avg_cross_delay = None
|
||
if len(cross_delay_data_list) == 0:
|
||
return avg_cross_delay
|
||
elif len(cross_delay_data_list) == 1:
|
||
avg_cross_delay = cross_delay_data_list[0]
|
||
return avg_cross_delay
|
||
avg_cross_delay = pb.xl_cross_delayinfo_t()
|
||
avg_cross_delay.crossid = cross_delay_data_list[0].crossid
|
||
avg_cross_delay.tp = cross_delay_data_list[0].tp
|
||
avg_cross_delay.daynum = 0
|
||
sum_car_num, delay_time, stop_times, queue_len, speed, jam_index, park_time, std_flow, high_park_percent, truck_percent, park_percent, move_speed, imbalance_index\
|
||
= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
# 路口延误数据指标聚合逻辑
|
||
for item in cross_delay_data_list:
|
||
item_delay_info = item.delay_info()
|
||
item_car_num = item_delay_info.car_num
|
||
if item_car_num != 0:
|
||
sum_car_num += item_car_num
|
||
delay_time += item_delay_info.delay_time * item_car_num
|
||
stop_times += item_delay_info.stop_times * item_car_num
|
||
queue_len += item_delay_info.queue_len * item_car_num
|
||
speed += item_delay_info.speed * item_car_num
|
||
jam_index += item_delay_info.jam_index * item_car_num
|
||
park_time += item_delay_info.park_time * item_car_num
|
||
high_park_percent += item_delay_info.high_park_percent * item_car_num
|
||
truck_percent += item_delay_info.truck_percent * item_car_num
|
||
park_percent += item_delay_info.park_percent * item_car_num
|
||
move_speed += item_delay_info.move_speed * item_car_num
|
||
# imbalance_index += item_delay_info.imbalance_index * item_car_num
|
||
std_flow += item_delay_info.std_flow
|
||
|
||
avg_cross_delay.delay_info.car_num = sum_car_num
|
||
avg_cross_delay.delay_info.delay_time = delay_time / sum_car_num
|
||
avg_cross_delay.delay_info.stop_times = stop_times / sum_car_num
|
||
avg_cross_delay.delay_info.queue_len = queue_len / sum_car_num
|
||
avg_cross_delay.delay_info.speed = speed / sum_car_num
|
||
avg_cross_delay.delay_info.jam_index = jam_index / sum_car_num
|
||
avg_cross_delay.delay_info.park_time = park_time / sum_car_num
|
||
avg_cross_delay.delay_info.high_park_percent = high_park_percent / sum_car_num
|
||
avg_cross_delay.delay_info.truck_percent = truck_percent / sum_car_num
|
||
avg_cross_delay.delay_info.park_percent = park_percent / sum_car_num
|
||
avg_cross_delay.delay_info.move_speed = move_speed / sum_car_num
|
||
# avg_cross_delay.delay_info.imbalance_index = imbalance_index / sum_car_num
|
||
avg_cross_delay.delay_info.std_flow = std_flow / len(cross_delay_data_list)
|
||
|
||
# 进口道延误数据聚合处理逻辑
|
||
inroad_delay_info_dict = {}
|
||
for item in cross_delay_data_list:
|
||
inroad_delay_infos = item.inroad_delay_infos()
|
||
for inroad_item in inroad_delay_infos:
|
||
inroadid = inroad_item.inroadid
|
||
if inroadid not in inroad_delay_info_dict:
|
||
inroad_delay_info_dict[inroadid] = [inroad_item]
|
||
else:
|
||
inroad_delay_info_dict[inroadid].append(inroad_item)
|
||
flow_delay_list, inroad_delay_pb_list = [], []
|
||
flow_delay_info_dict = {}
|
||
max_stop_times, min_stop_times = 0, 99999
|
||
for inroadid in inroad_delay_info_dict.keys():
|
||
delay_infos = inroad_delay_info_dict[inroadid]
|
||
inroad_sum_car_num, inroad_delay_time, inroad_stop_times, inroad_queue_len, inroad_speed, inroad_jam_index, inroad_park_time, inroad_high_park_percent, inroad_truck_percent, inroad_park_percent, inroad_move_speed, inroad_imbalance_index, inroad_std_flow\
|
||
= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
ffs, capacity = delay_infos[0].ffs, delay_infos[0].capacity
|
||
turn_ratio_0, turn_ratio_1, turn_ratio_2, turn_ratio_3 = 0, 0, 0, 0
|
||
for delay_info in delay_infos:
|
||
inroad_sum_car_num += delay_info.car_num
|
||
inroad_delay_time += delay_info.delay_time * delay_info.car_num
|
||
inroad_stop_times += delay_info.stop_times * delay_info.car_num
|
||
inroad_queue_len += delay_info.queue_len * delay_info.car_num
|
||
inroad_speed += delay_info.speed * delay_info.car_num
|
||
inroad_jam_index += delay_info.jam_index * delay_info.car_num
|
||
inroad_park_time += delay_info.park_time * delay_info.car_num
|
||
inroad_high_park_percent += delay_info.high_park_percent * delay_info.car_num
|
||
inroad_truck_percent += delay_info.truck_percent * delay_info.car_num
|
||
inroad_park_percent += delay_info.park_percent * delay_info.car_num
|
||
inroad_move_speed += delay_info.move_speed * delay_info.car_num
|
||
# inroad_imbalance_index += delay_info.imbalance_index * delay_info.car_num
|
||
inroad_std_flow += delay_info.std_flow
|
||
turn_ratio_0 += delay_info.turn_ratio_0
|
||
turn_ratio_1 += delay_info.turn_ratio_1
|
||
turn_ratio_2 += delay_info.turn_ratio_2
|
||
turn_ratio_3 += delay_info.turn_ratio_3
|
||
# 流向级别数据指标聚合处理逻辑
|
||
flow_delay_infos = delay_info.flow_delay_infos
|
||
flow_delay_list.extend(flow_delay_infos)
|
||
inroad_delay_info = pb.xl_inroad_delayinfo_t()
|
||
inroad_delay_info.inroadid = inroadid
|
||
inroad_delay_info.ffs = ffs
|
||
inroad_delay_info.capacity = capacity
|
||
inroad_delay_info.car_num = inroad_sum_car_num
|
||
inroad_delay_info.delay_time = inroad_delay_time / inroad_sum_car_num
|
||
inroad_delay_info.stop_times = inroad_stop_times / inroad_sum_car_num
|
||
if stop_times > max_stop_times:
|
||
max_stop_times = stop_times
|
||
if stop_times < min_stop_times:
|
||
min_stop_times = stop_times
|
||
inroad_delay_info.queue_len = inroad_queue_len / inroad_sum_car_num
|
||
inroad_delay_info.speed = inroad_speed / inroad_sum_car_num
|
||
inroad_delay_info.jam_index = inroad_jam_index / inroad_sum_car_num
|
||
inroad_delay_info.park_time = inroad_park_time / inroad_sum_car_num
|
||
inroad_delay_info.high_park_percent = inroad_high_park_percent / inroad_sum_car_num
|
||
inroad_delay_info.truck_percent = inroad_truck_percent / inroad_sum_car_num
|
||
inroad_delay_info.park_percent = inroad_park_percent / inroad_sum_car_num
|
||
inroad_delay_info.move_speed = inroad_move_speed / inroad_sum_car_num
|
||
# inroad_delay_info.imbalance_index = inroad_imbalance_index / inroad_sum_car_num
|
||
inroad_delay_info.std_flow = inroad_std_flow / len(delay_infos)
|
||
inroad_delay_info.turn_ratio_0 = turn_ratio_0
|
||
inroad_delay_info.turn_ratio_1 = turn_ratio_1
|
||
inroad_delay_info.turn_ratio_2 = turn_ratio_2
|
||
inroad_delay_info.turn_ratio_3 = turn_ratio_3
|
||
inroad_delay_pb_list.append(inroad_delay_info)
|
||
cross_imbalance_index = round((max_stop_times - min_stop_times) / avg_cross_delay.delay_info.stop_times, 2)
|
||
avg_cross_delay.delay_info.imbalance_index = cross_imbalance_index
|
||
|
||
for flow_delay_info in flow_delay_list:
|
||
xlink_id = flow_delay_info.xlink_id
|
||
if xlink_id not in flow_delay_info_dict:
|
||
flow_delay_info_dict[xlink_id] = [flow_delay_info]
|
||
else:
|
||
flow_delay_info_dict[xlink_id].append(flow_delay_info)
|
||
for xlink_id in flow_delay_info_dict.keys():
|
||
flow_delay_infos = flow_delay_info_dict[xlink_id]
|
||
inroadid = flow_delay_infos[0].inroadid
|
||
turn_type = flow_delay_infos[0].turn_type
|
||
flow_sum_car_num, flow_delay_time, flow_stop_times, flow_queue_len, flow_speed, flow_jam_index, flow_park_time, flow_high_park_percent, flow_truck_percent, flow_park_percent, flow_move_speed, flow_imbalance_index, flow_std_flow \
|
||
= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
for flow_delay_info in flow_delay_infos:
|
||
flow_sum_car_num += flow_delay_info.car_num
|
||
flow_delay_time += flow_delay_info.delay_time * flow_delay_info.car_num
|
||
flow_stop_times += flow_delay_info.stop_times * flow_delay_info.car_num
|
||
flow_queue_len += flow_delay_info.queue_len * flow_delay_info.car_num
|
||
flow_speed += flow_delay_info.speed * flow_delay_info.car_num
|
||
flow_jam_index += flow_delay_info.jam_index * flow_delay_info.car_num
|
||
flow_park_time += flow_delay_info.park_time * flow_delay_info.car_num
|
||
flow_high_park_percent += flow_delay_info.high_park_percent * flow_delay_info.car_num
|
||
flow_truck_percent += flow_delay_info.truck_percent * flow_delay_info.car_num
|
||
flow_park_percent += flow_delay_info.park_percent * flow_delay_info.car_num
|
||
flow_move_speed += flow_delay_info.move_speed * flow_delay_info.car_num
|
||
# flow_imbalance_index += flow_delay_info.imbalance_index * flow_delay_info.car_num
|
||
flow_std_flow += flow_delay_info.std_flow
|
||
flow_info = pb.xl_flow_delayinfo_t()
|
||
flow_info.xlink_id = xlink_id
|
||
flow_info.inroadid = inroadid
|
||
flow_info.turn_type = turn_type
|
||
flow_info.car_num = flow_sum_car_num
|
||
flow_info.delay_time = flow_delay_time / flow_sum_car_num
|
||
flow_info.stop_times = flow_stop_times / flow_sum_car_num
|
||
flow_info.queue_len = flow_queue_len / flow_sum_car_num
|
||
flow_info.speed = flow_speed / flow_sum_car_num
|
||
flow_info.jam_index = flow_jam_index / flow_sum_car_num
|
||
flow_info.park_time = flow_park_time / flow_sum_car_num
|
||
flow_info.high_park_percent = flow_high_park_percent / flow_sum_car_num
|
||
flow_info.truck_percent = flow_truck_percent / flow_sum_car_num
|
||
flow_info.park_percent = flow_park_percent / flow_sum_car_num
|
||
flow_info.move_speed = flow_move_speed / flow_sum_car_num
|
||
# flow_info.imbalance_index = flow_imbalance_index / flow_sum_car_num
|
||
flow_info.std_flow = flow_std_flow / len(flow_delay_infos)
|
||
for inroad_info in inroad_delay_pb_list:
|
||
if inroad_info.inroadid == inroadid:
|
||
inroad_info.flow_delay_infos.append(flow_info)
|
||
inroad_delay_infos_with_imbalance = calc_inroad_imbalance_index(inroad_delay_pb_list)
|
||
avg_cross_delay.inroad_delay_infos.extend(inroad_delay_infos_with_imbalance)
|
||
|
||
# 出口道流量数据聚合逻辑
|
||
outroad_delay_info_dict = {}
|
||
|
||
for item in cross_delay_data_list:
|
||
outroadid_infos = item.outroadInfos
|
||
for outroadid_info in outroadid_infos:
|
||
outroadid = outroadid_info.outroadid
|
||
if outroadid not in outroad_delay_info_dict:
|
||
outroad_delay_info_dict[outroadid] = [outroadid_info]
|
||
else:
|
||
outroad_delay_info_dict[outroadid].append(outroadid_info)
|
||
|
||
for outroadid in outroad_delay_info_dict.keys():
|
||
outroadid_infos = outroad_delay_info_dict[outroadid]
|
||
car_num, turn_ratio_0, turn_ratio_1, turn_ratio_2, turn_ratio_3 = 0, 0, 0, 0, 0
|
||
for outroadid_info in outroadid_infos:
|
||
turn_info = outroadid_info.turn_info
|
||
car_num += turn_info.car_num
|
||
turn_ratio_0 += turn_info.turn_ratio_0
|
||
turn_ratio_1 += turn_info.turn_ratio_1
|
||
turn_ratio_2 += turn_info.turn_ratio_2
|
||
turn_ratio_3 += turn_info.turn_ratio_3
|
||
outroadid_info = pb.xl_outroad_info_t()
|
||
outroadid_info.outroadid = outroadid
|
||
outroadid_info.turn_info.car_num = car_num
|
||
outroadid_info.turn_info.turn_ratio_0 = turn_ratio_0
|
||
outroadid_info.turn_info.turn_ratio_1 = turn_ratio_1
|
||
outroadid_info.turn_info.turn_ratio_2 = turn_ratio_2
|
||
outroadid_info.turn_info.turn_ratio_3 = turn_ratio_3
|
||
avg_cross_delay.outroad_infos.append(outroadid_info)
|
||
|
||
return avg_cross_delay
|
||
|
||
|
||
# 生成路口诊断页面路口概览数据指标的函数
|
||
def gen_overview_index(avg_cross_delay_info, inroad_static_info_dict, nodeid, date_list, roads_dir_dict):
|
||
car_num = avg_cross_delay_info.car_num
|
||
crossid = avg_cross_delay_info.crossid
|
||
jam_index = round(avg_cross_delay_info.jam_index, 2)
|
||
stop_times = round(avg_cross_delay_info.stop_times, 2)
|
||
high_park_percent = str(round(avg_cross_delay_info.high_park_percent, 2)) + '%'
|
||
imbanlance_index = round(avg_cross_delay_info.imbalance_index, 2)
|
||
speed = round(avg_cross_delay_info.speed, 2) * 100
|
||
move_speed = round(avg_cross_delay_info.move_speed, 2) * 100
|
||
park_time = round(avg_cross_delay_info.park_time, 2)
|
||
delay_time = round(avg_cross_delay_info.delay_time, 2)
|
||
high_stop_turn_ratio_desc, main_flow_src_desc = gen_high_stop_turn_ratio_desc(avg_cross_delay_info.inroad_delay_infos, inroad_static_info_dict, car_num)
|
||
|
||
tide_index_list = calc_tide_index(crossid, nodeid, date_list, roads_dir_dict)
|
||
usable_tide_list = [item for item in tide_index_list if item['tide_index'] != 0]
|
||
tide_index = round(sum(usable_tide_list) / len(usable_tide_list), 2)
|
||
service_level = calc_service_level(delay_time)
|
||
overview_res = {
|
||
'jam_index': jam_index,
|
||
'stop_times': stop_times,
|
||
'high_park_percent': high_park_percent,
|
||
'imbanlance_index': imbanlance_index,
|
||
'speed': speed,
|
||
'move_speed': move_speed,
|
||
'park_time': park_time,
|
||
'delay_time': delay_time,
|
||
'service_level': service_level,
|
||
'high_stop_turn_ratio_desc': high_stop_turn_ratio_desc,
|
||
'main_flow_src_desc': main_flow_src_desc,
|
||
'tide_index': tide_index
|
||
}
|
||
return overview_res
|
||
|
||
|
||
def gen_high_stop_turn_ratio_desc(inroad_delay_infos, inroad_static_info_dict, car_num):
|
||
src_dict, src_desc_list, main_flow_src_list = {}, [], []
|
||
for inroad_info in inroad_delay_infos:
|
||
inroadid = inroad_info.inroadid
|
||
inroad_car_num = inroad_info.car_num
|
||
src_dir = dir_str_dict[inroad_static_info_dict[inroadid]['src_direct']]
|
||
if inroad_car_num / car_num > 0.25:
|
||
check_res = found_max_car_num_flow(inroad_car_num, inroad_info)
|
||
if check_res != -1:
|
||
main_flow_src_list.append(src_dir + int_turn_type2str[check_res])
|
||
flow_delay_infos = inroad_info.flow_delay_infos
|
||
for item in flow_delay_infos:
|
||
if item.stop_times >= 1:
|
||
turn_type = int_turn_type2str[item.turn_type]
|
||
if src_dir not in src_dict.keys():
|
||
src_dict[src_dir] = [turn_type]
|
||
else:
|
||
src_dict[src_dir].append(turn_type)
|
||
for item in src_dict.keys():
|
||
src_desc_list.append(item + '/'.join(src_dict[item]))
|
||
return '、'.join(src_desc_list) if src_desc_list else '无', '、'.join(main_flow_src_list) if main_flow_src_list else '无'
|
||
|
||
|
||
def found_max_car_num_flow(inroad_car_num, inroad_info):
|
||
data_list = [inroad_info.turn_ratio_0, inroad_info.turn_ratio_1, inroad_info.turn_ratio_2, inroad_info.turn_ratio_3]
|
||
for i in range(len(data_list)):
|
||
if data_list[i] / inroad_car_num > 0.5:
|
||
return i
|
||
return -1
|
||
|
||
|
||
def query_cross_ledger_info(crossid, nodeid, area_id, userid):
|
||
ledger_url = f"http://120.53.125.169:7070/api/common/cross_ledger_detail?crossid={crossid}&crossno=&nodeid={nodeid}&area_id={area_id}&userid={userid}"
|
||
headers = {"Content-Type": "application/json"}
|
||
cross_ledger_info = requests.get(ledger_url, headers=headers)
|
||
if cross_ledger_info.status_code != 200 or cross_ledger_info.json()['status'] != 0:
|
||
logging.error(f"查询路口台账信息失败,crossid:{crossid},nodeid:{nodeid},area_id:{area_id},userid:{userid}")
|
||
return None, None
|
||
division_list, company_list, slc_company_dict, slckind_list, detector_type_dict = gen_ledger_base_info(nodeid, area_id)
|
||
cross_ledger_info_dict = json.loads(cross_ledger_info.text)
|
||
slc_company = cross_ledger_info_dict['data']['ledger']['slc_company']
|
||
location = cross_ledger_info_dict['data']['ledger']['location']
|
||
slc_company_name = slc_company_dict[slc_company] if slc_company in slc_company_dict.keys() else '-'
|
||
internet = cross_ledger_info_dict['data']['ledger']['internet']
|
||
internet_str = int_internet_code2str[internet]
|
||
primary = cross_ledger_info_dict['data']['ledger']['primary']
|
||
secondary = cross_ledger_info_dict['data']['ledger']['secondary']
|
||
cross_model = int_cross_model2str[primary] + '-' + int_cross_model2str[secondary]
|
||
light_infos = cross_ledger_info_dict['data']['light_infos']
|
||
src_light_dict = gen_dir_light_info_dict(light_infos)
|
||
roads = cross_ledger_info_dict['data']['roads']
|
||
dir_list = roads.keys()
|
||
length_info, lane_nums_list, road_special_info = {}, [], {}
|
||
sum_length = 0
|
||
for dir in dir_list:
|
||
dir_length = roads[dir]['topology']['entry']['road_length']
|
||
straight_left_split, reverse_turn, left_turn_waiting_area, straight_turn_waiting_area, reversible_lanes_info, outside_left = 0, 0, 0, 0, 0, 0
|
||
if 2 in src_light_dict[dir] and (1 in src_light_dict[dir] or 3 in src_light_dict[dir]):
|
||
straight_left_split = 1
|
||
if roads[dir]['canaliza']['reverse_turn'] == 1:
|
||
reverse_turn = 1
|
||
if roads[dir]['canaliza']['left_turn_waiting_area'] == 1:
|
||
left_turn_waiting_area = 1
|
||
if roads[dir]['canaliza']['straight_turn_waiting_area'] == 1:
|
||
straight_turn_waiting_area = 1
|
||
if len(roads[dir]['canaliza']['reversible_lanes_info']) > 0:
|
||
reversible_lanes_info = 1
|
||
lane_turn_info = roads[dir]['topology']['entry']['lane_turn_info']
|
||
if check_outside_left(lane_turn_info):
|
||
outside_left = 1
|
||
road_special_info[dir_str_dict[dir]] = {
|
||
'straight_left_split': straight_left_split,
|
||
'reverse_turn': reverse_turn,
|
||
'left_turn_waiting_area': left_turn_waiting_area,
|
||
'straight_turn_waiting_area': straight_turn_waiting_area,
|
||
'reversible_lanes_info': reversible_lanes_info,
|
||
'outside_left': outside_left
|
||
}
|
||
lane_nums_list.append([dir_str_dict[dir] + '进口', roads[dir]['entry_lane_num'], dir_str_dict[src_reverse[dir]] + '出口', roads[dir]['exit_lane_num']])
|
||
if dir_length != '-':
|
||
sum_length += dir_length
|
||
length_info[dir] = dir_length
|
||
avg_length = round(sum_length / len(length_info.keys()), 0) if length_info else 0
|
||
cross_static_info = {
|
||
'crossid': crossid,
|
||
'nodeid': nodeid,
|
||
'area_id': area_id,
|
||
'location': location,
|
||
'slc_company': slc_company_name,
|
||
'internet': internet_str,
|
||
'cross_model': cross_model,
|
||
'lane_nums_list': lane_nums_list,
|
||
'road_special_info': road_special_info,
|
||
'length_info': length_info,
|
||
'avg_length': avg_length
|
||
}
|
||
return cross_static_info, cross_ledger_info_dict
|
||
|
||
|
||
def gen_ledger_base_info(nodeid, area_id):
|
||
node_base_params_info = db_tmnet.query_base_info(nodeid, area_id)
|
||
# 下列字段当为空时需在前端展示尚未针对该城市进行配置的同义提示语句
|
||
division_list, company_list, slc_company_dict, slckind_list, detector_type_dict = [], [], {}, [], {}
|
||
for row in node_base_params_info:
|
||
if row['param_type'] == 'division':
|
||
division_list.append(row['param_value'])
|
||
elif row['param_type'] == 'company':
|
||
company_list.append(row['param_value'])
|
||
elif row['param_type'] == 'slc_company':
|
||
slc_company_dict[row['param_code']] = row['param_value']
|
||
elif row['param_type'] == 'slckind':
|
||
slckind_list.append(row['param_value'])
|
||
elif row['param_type'] == 'detector_type':
|
||
detector_type_dict[row['param_code']] = row['param_value']
|
||
return division_list, company_list, slc_company_dict, slckind_list, detector_type_dict
|
||
|
||
|
||
def gen_dir_light_info_dict(light_infos):
|
||
dir_light_dict = {}
|
||
for row in light_infos:
|
||
srcDir = row['srcDir']
|
||
light_type = row['light_type']
|
||
if srcDir not in dir_light_dict.keys():
|
||
dir_light_dict[srcDir] = [light_type]
|
||
else:
|
||
dir_light_dict[srcDir].append(light_type)
|
||
return dir_light_dict
|
||
|
||
|
||
def check_outside_left(lane_turn_info):
|
||
seen_s = False # 是否已出现直行车道
|
||
for func in lane_turn_info:
|
||
if 's' in func: # 当前是直行车道
|
||
seen_s = True
|
||
if seen_s and ('l' in func): # 直行车道右侧出现左转
|
||
return True
|
||
return False
|
||
|
||
|
||
def gen_road_delay_index(avg_cross_delay_info, roads_dir_dict):
|
||
road_delay_infos = []
|
||
if not avg_cross_delay_info:
|
||
return road_delay_infos
|
||
road_delay_infos = avg_cross_delay_info.inroad_delay_infos()
|
||
road_dir = {item['in']: item for item in roads_dir_dict.keys()}
|
||
road_flow_index = {}
|
||
for road_index in road_delay_infos:
|
||
roadid = road_index.inroadid
|
||
if roadid not in road_dir.keys():
|
||
continue
|
||
service_level = calc_service_level(road_delay_infos[road_index].delay_info.delay_time)
|
||
road_flow_index[roadid] = {
|
||
'stop_times': round(road_delay_infos[road_index].delay_info.stop_times, 2),
|
||
'high_park_percent': str(round(road_delay_infos[road_index].delay_info.high_park_percent, 2)) + '%',
|
||
'imbalance_index': round(road_delay_infos[road_index].delay_info.imbalance_index, 2),
|
||
'park_time': round(road_delay_infos[road_index].delay_info.park_time, 2),
|
||
'delay_time': round(road_delay_infos[road_index].delay_info.delay_time, 2),
|
||
'speed': round(road_delay_infos[road_index].delay_info.speed, 2),
|
||
'move_speed': round(road_delay_infos[road_index].delay_info.move_speed, 2),
|
||
'service_level': service_level,
|
||
'flow_delays': {}
|
||
}
|
||
flow_delay_infos = road_delay_infos[road_index].flow_delay_infos
|
||
for flow_delay_info in flow_delay_infos:
|
||
if flow_delay_info.turn_type not in (0, 1):
|
||
continue
|
||
flow_service_level = calc_service_level(flow_delay_info.delay_time)
|
||
road_flow_index[roadid]['flow_delays'][flow_delay_info.turn_type] = {
|
||
'stop_times': round(flow_delay_info.delay_info.stop_times, 2),
|
||
'high_park_percent': str(round(flow_delay_info.delay_info.high_park_percent, 2)) + '%',
|
||
'park_time': round(flow_delay_info.delay_info.park_time, 2),
|
||
'delay_time': round(flow_delay_info.delay_info.delay_time, 2),
|
||
'speed': round(flow_delay_info.delay_info.speed, 2),
|
||
'service_level': flow_service_level,
|
||
'move_speed': round(flow_delay_info.delay_info.move_speed, 2)
|
||
}
|
||
return road_flow_index
|
||
|
||
|
||
def gen_road_dir_dict(cross_ledger_info_dict):
|
||
roads_dir_dict = {}
|
||
if not cross_ledger_info_dict:
|
||
return roads_dir_dict
|
||
roads = cross_ledger_info_dict['data']['roads']
|
||
for dir in roads.keys():
|
||
roads_dir_dict[dir] = {
|
||
'in': roads[dir]['roadid'],
|
||
'out': roads[dir]['out_roadid']
|
||
}
|
||
return roads_dir_dict
|
||
|
||
|
||
def calc_inroad_imbalance_index(inroad_delay_pb_list):
|
||
for item in inroad_delay_pb_list:
|
||
avg_stop_times = item.delay_info.stop_times
|
||
max_stop_times, min_stop_times = 0, 99999
|
||
flow_delay_infos = item.flow_delay_infos
|
||
for flow_delay_info in flow_delay_infos:
|
||
if flow_delay_info.stop_times > max_stop_times:
|
||
max_stop_times = flow_delay_info.stop_times
|
||
if flow_delay_info.stop_times < min_stop_times:
|
||
min_stop_times = flow_delay_info.stop_times
|
||
imbalance_index = round((max_stop_times - min_stop_times) / avg_stop_times, 2)
|
||
item.delay_info.imbalance_index = imbalance_index
|
||
return inroad_delay_pb_list
|
||
|
||
|
||
def gen_flow_turn_rate_index(avg_cross_delay_info, roads_dir_dict):
|
||
road_delay_infos = avg_cross_delay_info.inroad_delay_infos
|
||
outroad_infos = avg_cross_delay_info.outroad_infos
|
||
road_delay_dict = {item.inroadid: item for item in road_delay_infos}
|
||
outroad_info_dict = {item.outroadid: item for item in outroad_infos}
|
||
cross_sum_car_num = sum([item.delay_info.car_num for item in road_delay_infos])
|
||
cross_out_sum_car_num = sum([item.turn_info.out_car_num for item in outroad_infos])
|
||
road_flow_turn_rate = {}
|
||
for dir in roads_dir_dict.keys():
|
||
roadid = roads_dir_dict[dir]['in']
|
||
l_rate, s_rate, r_rate = '-', '-', '-'
|
||
out_l_rate, out_s_rate, out_r_rate = '-', '-', '-'
|
||
in_flow_rate, out_flow_rate = '-', '-'
|
||
if roadid != '-' and roadid in road_delay_dict.keys():
|
||
car_num = road_delay_dict[roadid].delay_info.car_num
|
||
in_flow_rate = round(car_num / cross_sum_car_num, 2) if cross_out_sum_car_num != 0 else '-'
|
||
|
||
flow_delay_infos = road_delay_dict[roadid].flow_delay_infos
|
||
for flow_delay_info in flow_delay_infos:
|
||
if flow_delay_info.turn_type not in (0, 1, 2):
|
||
continue
|
||
if flow_delay_info.turn_type == 0:
|
||
l_rate = round(flow_delay_info.delay_info.car_num / car_num, 2) if car_num != 0 else '-'
|
||
elif flow_delay_info.turn_type == 1:
|
||
s_rate = round(flow_delay_info.delay_info.car_num / car_num, 2) if car_num != 0 else '-'
|
||
elif flow_delay_info.turn_type == 2:
|
||
r_rate = round(flow_delay_info.delay_info.car_num / car_num, 2) if car_num != 0 else '-'
|
||
out_road_id = roads_dir_dict[dir]['out']
|
||
if out_road_id != '-' and out_road_id in outroad_info_dict.keys():
|
||
out_car_num = outroad_info_dict[out_road_id].turn_info.car_num
|
||
out_flow_rate = round(out_car_num / cross_out_sum_car_num, 2) if cross_out_sum_car_num != 0 else '-'
|
||
out_l_rate = round(outroad_info_dict[out_road_id].turn_info.turn_ratio_1 / cross_out_sum_car_num, 2) if cross_out_sum_car_num != 0 else '-'
|
||
out_s_rate = round(outroad_info_dict[out_road_id].turn_info.turn_ratio_0 / cross_out_sum_car_num, 2) if cross_out_sum_car_num != 0 else '-'
|
||
out_r_rate = round(outroad_info_dict[out_road_id].turn_info.turn_ratio_2 / cross_out_sum_car_num, 2) if cross_out_sum_car_num != 0 else '-'
|
||
road_flow_turn_rate[roadid] = {
|
||
'in_flow_rate': in_flow_rate,
|
||
'out_flow_rate': out_flow_rate,
|
||
'l_rate': l_rate,
|
||
's_rate': s_rate,
|
||
'r_rate': r_rate,
|
||
'out_l_rate': out_l_rate,
|
||
'out_s_rate': out_s_rate,
|
||
'out_r_rate': out_r_rate
|
||
}
|
||
return road_flow_turn_rate
|
||
|
||
|
||
def calc_service_level(delay_time):
|
||
if delay_time <= 10:
|
||
service_level = 'A'
|
||
elif 10 < delay_time <= 20:
|
||
service_level = 'B'
|
||
elif 20 < delay_time <= 35:
|
||
service_level = 'C'
|
||
elif 35 < delay_time <= 55:
|
||
service_level = 'D'
|
||
elif 55 < delay_time <= 80:
|
||
service_level = 'E'
|
||
else:
|
||
service_level = 'F'
|
||
return service_level
|
||
|
||
|
||
def calc_tide_index(crossid, nodeid, date_list, roads_dir_dict):
|
||
tide_index_list = []
|
||
am_tp_start, am_tp_end = 't700', '900'
|
||
pm_tp_start, pm_tp_end = 't1700', '1900'
|
||
am_cross_delay_data_list = db_cross.query_cross_delay_info(crossid, nodeid, date_list, am_tp_start, am_tp_end)
|
||
pm_cross_delay_data_list = db_cross.query_cross_delay_info(crossid, nodeid, date_list, pm_tp_start, pm_tp_end)
|
||
date_am_delay_info_dict = {item['day']: item['data'] for item in am_cross_delay_data_list}
|
||
date_pm_delay_info_dict = {item['day']: item['data'] for item in pm_cross_delay_data_list}
|
||
|
||
# 构建对向进口道对
|
||
subtend_road_pair = gen_subtend_road_pair(roads_dir_dict)
|
||
for date in date_list:
|
||
max_am_flow, max_pm_flow, tide_index, max_am_flow_road, max_pm_flow_road = 0, 99999999999, 0, '', ''
|
||
if date not in date_am_delay_info_dict.keys() or date not in date_pm_delay_info_dict.keys():
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
item_am_cross_delay_info = pb.xl_cross_delayinfo_t()
|
||
item_pm_cross_delay_info = pb.xl_cross_delayinfo_t()
|
||
item_am_cross_delay_info.ParseFromString(date_am_delay_info_dict[date])
|
||
item_pm_cross_delay_info.ParseFromString(date_pm_delay_info_dict[date])
|
||
if not item_am_cross_delay_info or not item_pm_cross_delay_info:
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
am_inroad_infos = item_am_cross_delay_info.inroad_delay_infos
|
||
pm_inroad_infos = item_pm_cross_delay_info.inroad_delay_infos
|
||
am_inroad_info_dict = {item.inroadid: item for item in am_inroad_infos}
|
||
pm_inroad_info_dict = {item.inroadid: item for item in pm_inroad_infos}
|
||
|
||
# 找出早高峰最高流量的进口道
|
||
for am_inroad_info in am_inroad_infos:
|
||
am_flow = am_inroad_info.delay_info.car_num
|
||
if am_flow > max_am_flow:
|
||
max_am_flow = am_flow
|
||
max_am_flow_road = am_inroad_info.inroadid
|
||
if max_am_flow_road == '' or max_am_flow_road not in subtend_road_pair.keys():
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
subtend_road_am_flow = am_inroad_info_dict[subtend_road_pair[max_am_flow_road]].delay_info.car_num
|
||
# 如果进口道流量小于20 则无意义
|
||
if min(subtend_road_am_flow, max_am_flow) < 20:
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
|
||
# 找出晚高峰最高流量的进口道
|
||
for pm_inroad_info in pm_inroad_infos:
|
||
pm_flow = pm_inroad_info.delay_info.car_num
|
||
if pm_flow > max_pm_flow:
|
||
max_pm_flow = pm_flow
|
||
max_pm_flow_road = pm_inroad_info.inroadid
|
||
# 如果路段id为空或不在对向对里,则无意义
|
||
if max_pm_flow_road == '' or max_pm_flow_road not in subtend_road_pair.keys():
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
subtend_road_pm_flow = pm_inroad_info_dict[subtend_road_pair[max_pm_flow_road]].delay_info.car_num
|
||
if min(subtend_road_pm_flow, max_pm_flow) < 20:
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
# 如果早晚高峰的最大流量进口道不处于同一个对向对中,则无意义
|
||
if max_pm_flow_road != max_am_flow_road and max_pm_flow_road != subtend_road_pair[max_am_flow_road]:
|
||
tide_index_list.append(tide_index)
|
||
continue
|
||
Fam = max(max_am_flow_road, subtend_road_am_flow) / min(max_am_flow_road, subtend_road_am_flow)
|
||
Fpm = max(max_pm_flow_road, subtend_road_pm_flow) / min(max_pm_flow_road, subtend_road_pm_flow)
|
||
if Fam >= 1.5 and Fpm >= 1.5 and max_pm_flow_road == subtend_road_pair[max_am_flow_road]:
|
||
tide_index = min(Fam, Fpm) / max(Fam, Fpm)
|
||
elif min(Fam, Fpm) <= 0:
|
||
tide_index = 0
|
||
elif max_pm_flow_road == max_am_flow_road:
|
||
tide_index = Fam * Fpm
|
||
tide_index_list.append(tide_index)
|
||
|
||
return tide_index_list
|
||
|
||
|
||
def gen_subtend_road_pair(roads_dir_dict):
|
||
subtend_road_pair = {}
|
||
tmp_road_dir = roads_dir_dict.deepcopy()
|
||
for dir in tmp_road_dir.keys():
|
||
if tmp_road_dir[dir]['in'] == '-':
|
||
continue
|
||
subtend_dir = src_reverse[dir]
|
||
if subtend_dir in tmp_road_dir.keys() and tmp_road_dir[subtend_dir]['in'] != '-':
|
||
subtend_road_pair[tmp_road_dir[dir]['in']] = tmp_road_dir[subtend_dir]['in']
|
||
tmp_road_dir.pop(dir)
|
||
tmp_road_dir.pop(subtend_dir)
|
||
|
||
return subtend_road_pair
|